Prediction of Average Rice Prices at the Indonesian Wholesale Level Using the Least Square Method
Keywords:
Forecasting, least square method, MAPE, rice priceAbstract
Accurate forecasting of staple commodity prices is critical for economic planning, market stabilization, and food security, particularly in countries like Indonesia where rice is a dietary mainstay. This study investigates the application of the Least Square Method (LSM) as a mathematical model for predicting wholesale rice prices in Indonesia, aiming to evaluate its effectiveness and accuracy in a real-world setting. Using monthly price data collected from Statistics Indonesia (Badan Pusat Statistik) covering the period from January 2022 to December 2023, the LSM was employed to identify a linear trend equation that could be used for forecasting future prices. The model parameters were calculated based on time-indexed historical data, and the trend equation was used to predict prices for the upcoming 12 months, from January to December 2024. To assess the model’s forecasting accuracy, the Mean Absolute Percentage Error (MAPE) was used as the primary evaluation metric. The analysis revealed a MAPE value of 2%, which indicates a highly accurate prediction according to standard interpretative scales. These results confirm that the Least Square Method is a valid and practical approach for time-series forecasting of rice prices in Indonesia. The study highlights the potential of LSM as a simple yet effective tool for supporting policy decisions and market interventions. However, it also notes that the linear model may not account for external variables such as seasonal variation, policy shifts, or supply chain disruptions, suggesting that future research could explore multivariate or non-linear approaches for improved forecasting robustness.
References
Anjelie, M.K. 2024. Penerapan Metode Least Square untuk Prediksi Harga Komoditas Pangan Kota Singkawang. Jurnal Progresif, vol. 20, no, 1. 53-64.
Assauri, S. 1984. Teknik dan Metode Peramalan. Jakarta: Fakultas Ekonomi Universitas Indonesia.
Handoko, T. Hani. 1984. Dasar-Dasar Manajemen Produksi dan Operasi. Yogyakarta: BPFE UGM Yogyakarta.
Hanke, J.E. and Wichern, D.W. 2009. Business Forecasting. 9th ed. Upper Saddle River, New Jersey: PEARSON Prentice Hall.
Lia, P.S. Jesika, S. Zizi, D.D. Yuliana. 2022. Prediksi Harga Cabai Rawit Merah sebagai Kebutuhan Pangan Masyarakat di Kota Pangkalpinang. Seminar Nasional Penelitian dan Pengabdian pada Masyarakat.
Machfiroh, I. S and C. A. Ramadhan. 2022. Peramalan Penjualan Produk Cup 220 Ml Menggunakan Metode Least Square Pada PT. Panen Embun Kemakmuran Tahun 2022. J. Mat. dan Stat. serta Apl., vol. 10, no. 2.
Makridakis, Spyros & Wheelright, S. 1999. Metode dan Aplikasi Peramalan. Jakarta: Erlangga.
Maricar, A. M. 2019. Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ. J. Sist. dan Inform., vol. 13, no. 2, pp. 36–45.
Montgomery, C.L. Jennings, M. Kulahci. 2015. Introduction Time Series Analysis and Forecasting, 2nd ed. New Jersey: John Willey & Sons, Inc.
Oktavia, A., Nita, S., Putra, R.T. 2023. Prediksi Penjualan Tabung Gas LPG 5,5 kg di PT. Parafin Energi Mandiri dengan Menggunakan Metode Least Square. Jurnal Ilmiah Matematika dan Terapan, 20(1), 31-37.
Pamungkas, D. P. 2016. Implementasi Metode Least Square Untuk Prediksi Penjualan Tahu Pong, J. Ilm. NERO, vol. 2, no. 2, pp. 75–81.
Raufun L., Rasyid, and D.R Siska. 2020. Sistem Prediksi Harga Pangan di Pasar Kota Baubau Menggunakan Metode Least Square. Jurnal Informatika, vol. 9, no. 1, 56 – 60.
Rohman, H. F. 2018. Metode Least Square untuk Prediksi Penjualan Sari Kedelai Rosi. Jurnal SIMETRIS, vol. 7, no. 2, 731-736.
Walpole, R.A. Koleksi Buku 1990 Pengantar statistika / Ronald E Walpole; alihbahasa Bambang Sumantri, 3rd ed. Jakarta: Gramedia, 1990.
Wardah S., Iskandar. 2016. Analisis Peramalan Penjualan Produk Keripik Pisang Kemasan Bungkus (Studi Kasus : Home Industry Arwana Food Tembilahan). Jurnal Teknik Industri , XI(3), 135-142.