Analysis of the Performance of the Moving Average Method in Forecasting the Increase in the Number of PLN Customers on Batam Island

Authors

  • Musfirah Dewi Lumentut Padang State Polytechnic
  • Khalil Rahman Electrical Engineering Department, Padang State Polytechnics, West Sumatera Province, Indonesia
  • Sarah Michelin Yunita Chien Hsin University of Science and Technology, Taoyuan City, Taiwan

Keywords:

Customer, demand, electricity, forecasting, moving average

Abstract

Electricity demand is a crucial factor in regional development, requiring accurate forecasting to ensure efficient distribution. This study analyzes the performance of two forecasting methods, Simple Moving Average (SMA) and Weighted Moving Average (WMA), in predicting the increase in PLN customers on Batam Island for the period 2023-2024. The accuracy of these methods was evaluated using Mean Absolute Deviation (MAD), Mean Squared Error (MSE), and Mean Absolute Percent Error (MAPE) ad performance indicators. The results indicate that both SMA and WMA provide accurate forecasts, with WMA slightly better accuracy due to its ability to assign different weights to past data. Based on the findings, the forecasted number of additional PLN customers in January 2025 using the WMA method is 386. This study demonstrates that the Moving Average method is a viable option  for short term electricity demand forecasting. However, its limitations in handling external factors suggest the need for more advanced forecasting models in future research.

References

A. Nurlifa and S. Kusumadewi. 2017. Sistem Peramalan Jumlah Penjualan Menggunakan Metode Moving Average Pada Rumah Jilnan Zaky. Inovtek Polbeng-Seri Informatika, 2(1).

Anisya, A. and Wandyra, Y. 2016. Rekayasa Perangkat Lunak Pengendalian Inventori Menggunakan Metode SMA berbasis Ajax (Studi Kasus : Ptp Nusantara VI (Persero) Unit Usaha Kayu Aro). Jurnal Teknoif, 4(2).

Assauri, Sofyan. “Teknik dan Metode Peramalan”. LPFE UI. Jakarta.1991.

Attenborough, M. “Mathematics for Electrical Engineering and Computing”. Linacre House. 2003.

Azis, A., K and Kustanto. 2023. Penerapan Moving Average pada Prediksi Penjualan Accu. Jurnal TIKomSiN. 11(1), 25-34.

Azman, M. Maricar. “Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ”. 2019.

Baktiar, C., Wibowo, A., and Adipranata, R. 2015. Pembuatan Sistem Peramalan Penjualan dengan Metode Weighted Moving Average dan Double Exponential Smoothing pada UD Y. Jurnal Infra. 3(1)

D.C. Montgomery, C.L, and M. Kulahci. “Introduction to Time Series Analysis and Forecasting”. Canada: John Wiley and Sons Inc. 2015.

H. Utari, M. Aan, and N. SIlalahi. 2016. Perancangan Aplikasi Peramalan Permintaan Kebutuhan Tenaga Kerja pada Perusahaan Oytsourcing Menggunakan Algoritma Simple Moving Average. J. Times, 1(5).

M.P. Sulistyanto. 2016. Pengolahan Sinyall Load Cell 5kg Menggunakan Metode Moving Average. Jurnal Penelitian. 1(2), 138-145.

Oktavia, A., Nita, S., and Putra, R.T. 2023. Prediksi Penjualan Tabung Gas LPG 5,5kg di PT. Parafin Energi Mandiri Dengan Menggunakan Metode Least Square. Jurnal Ilmiah Matematika dan Terapan. 20(1), 31-37.

S. Makriadakis, S. Wheelwright C, and V.E. McGee. 2019. Metode dan Aplikasi Peramalan.

Sari. N.L., Hasanuddin. T. 2020. Analisis Performa Metode Moving Average Model untuk Prediksi Jumlah Penderita Covid-19. Indonesian Journal of Data and Science. 1(3), 87-95.

Sismi and M.Y. Darsyah. 2018. Perbandingan Prediksi Harga Saham PT. BRI, Tbk dengan Metode Arima dan Moving Average. Prosiding Seminar Nasional Mahasiswa Unimus, 1(1), 351-360.

Virginia, N., dkk. 2021. Moving Average sebagai Metode Analisa Peramalan Persediaan Gelas Kaca (Studi Kasus : Toko Top Senyum). Jurnal Elektro Luceat. 7(2).

Zannah, A. W. Analisis Peramalan Stok Barang dengan Metode Weight Moving Average dan Double Exponential Smoothing pada Jovita Ms Glow Lamongan. Journal of Intelligent Systems and Computation, 39-42.

Downloads

Published

2025-05-10

How to Cite

Musfirah Dewi Lumentut, Khalil Rahman, & Sarah Michelin Yunita. (2025). Analysis of the Performance of the Moving Average Method in Forecasting the Increase in the Number of PLN Customers on Batam Island . Journal of Applied Mathematics and Modelling, 1(1), 23–31. Retrieved from https://ejournal.cibnusantara.org/index.php/jamm/article/view/3