Dynamics of Phosphorus Sorption and Desorption in Ultisols Ameliorated with Humic Substances from Potential Ameliorants
DOI:
https://doi.org/10.64570/agrivolution.v1i2.32Keywords:
Amelioration, Humic substances, Fixation, Phosphorus, UltisolsAbstract
Ultisols have a very high P sorption capacity, which limits the availability of P to plants. Therefore, it is necessary to understand the P sorption-desorption mechanism after humic substances (HS) amelioration to improve fertilizer efficiency and land productivity. This study has examined the complexity of phosphorus fixation and the potential of HS in modifying the surface charge of Ultisols. This study used the batch equilibrium method and the Freundlich and Langmuir isotherm model approaches. Meanwhile, the surface charge characteristics of Ultisols, amended with humic substances (HS) from various potential ameliorants (control, HS-chicken manure, HS-black soldier fly, HS-wet decanter solid, and HS-peat), were evaluated using a completely randomized design with three replications. The HS from potential ameliorants significantly increases pH, PZC, electrical conductivity (EC), mineral and organic matter composition, CEC, and reduces potential redox (Eh), thereby increasing the soil's negative charge and buffering capacity. The HS—wet decanter solid and chicken manure were most effective, as they were proven to remove Al-exchange to unmeasurable levels through strong complexation between Al³⁺ and carboxylate and phenolic groups. The HS—wet decanter solid and chicken manure also drastically reduce P sorption and increase desorption through ligand competition and blocking of Al/Fe reactive sites, which resulted in increased P availability up to >600 mg kg-1 P2O5 at a concentration of 1000 mg L-1 P or 2290 mg kg⁻¹ P₂O₅ or 6.37g SP-36 per liter or 6.37 kg SP-36 per hectare for an application volume of 1,000 liters per hectare.
References
Ahmed, A. A., Morshedizad, M., Kühn, O., & Leinweber, P. (2024). Deciphering competitive interactions : Phosphate and organic matter binding on goethite through experimental and theoretical insights. Science of the Total Environment, 940(173510), 20. https://doi.org/10.1016/j.scitotenv.2024.173510
Bao, T., Mezemir, M., Chen, Z., Tao, Q., Wei, W., Cho, K., Yuan, P., Frost, R. L., & Ni, B. (2024). Comprehensive review of modified clay minerals for phosphate management and future prospects. Journal of Cleaner Production, 447(141425), 22. https://doi.org/10.1016/j.jclepro.2024.141425
Engedal, T., Messmer, B., Magid, J., Jensen, L. S., & Hansen, V. (2025). Bio-based fertilizers typically deliver on either high nutrient release or soil health parameters. Geoderma, 460(117424), 13. https://doi.org/10.1016/j.geoderma.2025.117424
Eviati, Sulaeman, Usman, L. H. L. A., Prihatini, H. E. T. R., & Wuningrum, P. (2023). Analisis Kimia Tanah, Tanaman, Air, Dan Pupuk. In I. A. Sipahutar, H. Wibowo, A. F. Siregar, L. R. Widowati, & T. Rostaman (Eds.), Kementerian Pertanian Republik Indonesia. https://tanahpupuk.bsip.pertanian.go.id
Gautam, B., Tiwari, S., Raj, M., Tomberlin, J. K., & Khanal, P. (2025). Expanding black soldier fly ( BSF ; Hermetia illucens ; Diptera : Stratiomyidae ) in the developing world : Use of BSF larvae as a biological tool to recycle various organic biowastes for alternative protein production in Nepal. Biotechnology Reports, 45(e00879), 13. https://doi.org/10.1016/j.btre.2025.e00879
Gerke, J. (2010). Humic ( Organic Matter ) -Al ( Fe ) -Phosphate Complexes : An Underestimated Phosphate Form in Soils and Source of Plant-Available Phosphate. Soil Science, 175(9), 417–425. https://doi.org/10.1097/SS.0b013e3181f1b4dd
Gofar, N., Sinurat, D., & Irawan, A. F. (2022). Kandungan hara serta kemantapan agregat tanah akibat penambahan limbah pabrik kelapa sawit decanter solid pada Ultisol Nutrient content and soil aggregate stability due to the addition of decanter solid palm oil mill waste on Ultisol. AGROMIX, 13(1), 112–117. https://doi.org/https://doi.org/10.35891/agx.v13i1.2845
Guo, C., Shabala, S., Chen, Z., Zhou, M., & Zhao, C. (2024). Aluminium tolerance and stomata operation : Towards optimising crop performance in acid soil. Plant Physiology and Biochemistry, 210(108626), 11. https://doi.org/10.1016/j.plaphy.2024.108626
Herviyanti, Maulana, A., Prasetyo, T. B., Lita, A. L., Harianti, M., & Monikasari, M. (2023). Characteristics of glyphosate adsorption with biochar from young coconut waste. IOP Conference Series: Earth and Environmental Science, 1208(1), 9. https://doi.org/10.1088/1755-1315/1208/1/012050
Johan, P. D., Ahmed, O. H., Omar, L., & Hasbullah, N. A. (2021). Phosphorus transformation in soils following co-application of charcoal and wood ash. Agronomy, 11(10), 1–25. https://doi.org/10.3390/agronomy11102010
Korzeniowska, J., Stanisławska-glubiak, E., & Brosig, J. (2025). The Effect of pH on Fertilizer Phosphorus Use Efficiency in Sandy Soil. Agricultural Water Management, 15(1599), 14. https://doi.org/https://doi.org/10.3390/agriculture15151599
Li, Q., Hu, W., Li, L., & Li, Y. (2023). Interactions between organic matter and Fe oxides at soil micro-interfaces : Quanti fi cation , associations , and in fl uencing factors. Science of the Total Environment, 855(158710), 15. https://doi.org/10.1016/j.scitotenv.2022.158710
Maffia, A., Oliva, M., Marra, F., Mallamaci, C., Nardi, S., & Muscolo, A. (2025). Humic Substances : Bridging Ecology and Agriculture for a Greener Future. Agronomy, 15(410), 1–33. https://doi.org/https://doi.org/10.3390/agronomy15020410
Mendez, J. C., Hiemstra, T., & Koopmans, G. F. (2020). Assessing the Reactive Surface Area of Soils and the Association of Soil Organic Carbon with Natural Oxide Nanoparticles Using Ferrihydrite as Proxy. Environmental Science & Technology, 54, 11990−12000. https://doi.org/10.1021/acs.est.0c02163
Monteiro, D., Fialho, M., Castro, D., Tatiane, M., Chaves, L., Campus, U. F. V, & A, A. P. H. R. N. (2019). Effects of rehabilitation strategies on soil aggregation , C and N distribution and carbon management index in coffee cultivation in mined soil. Ecological Indicators, 107(105668), 13. https://doi.org/10.1016/j.ecolind.2019.105668
Nurjanah, R. F., Mahbub, M., & Ifansyah, H. (2025). Pengaruh Pemberian Kombinasi Limbah Decanter Solid dan Abu Boiler Kelapa Sawit terhadap Perubahan Beberapa Sifat Kimia Tanah Ultisol. Acta Solum, 3(2), 75–85. https://doi.org/10.20527/actasolum.v3i2.2883
Pera-titus, M. (2010). On an isotherm thermodynamically consistent in Henry ’ s region for describing gas adsorption in microporous materials. Journal of Colloid And Interface Science, 345(2), 410–416. https://doi.org/10.1016/j.jcis.2010.01.027
Piccolo, A., & Drosos, M. (2025). The essential role of humified organic matter in preserving soil health. Chemical and Biological Technologies in Agriculture, 12(21), 22. https://doi.org/10.1186/s40538-025-00730-0
Prasetyo, T. B., Maulana, A., Harianti, M., Lita, A. L., Dwipa, I., Monikasari, M., & Herviyanti, H. (2024). Adsorption isotherm model of Hg2+with biochar from young coconut waste. IOP Conference Series: Earth and Environmental Science, 1297(1), 11. https://doi.org/10.1088/1755-1315/1297/1/012093
Shen, Y., Ma, Z., Chen, H., Lin, H., Li, G., & Li, M. (2023). Heliyon Effects of macromolecular organic acids on reducing inorganic phosphorus fixation in soil. Heliyon, 9(4), e14892. https://doi.org/10.1016/j.heliyon.2023.e14892
Sun, Y., Pan, D., Wei, X., Xian, D., Wang, P., Hou, J., Xu, Z., Liu, C., & Wu, W. (2020). Insight into the stability and correlated transport of kaolinite colloid : Effect of pH , electrolytes and humic substances *. Environmental Pollution, 266(115189), 9. https://doi.org/10.1016/j.envpol.2020.115189
Tan, W., Jia, Y., Huang, C., Zhang, H., Li, D., & Zhao, X. (2018). Increased suppression of methane production by humic substances in response to warming in anoxic environments. Journal of Environmental Management, 206, 602–606. https://doi.org/10.1016/j.jenvman.2017.11.012
Tariq, M. R., Liu, S., Wang, F., Wang, H., Mo, Q., Zhuang, Z., Zheng, C., Liang, Y., Liu, Y., & Rehman, K. (2025). Black Soldier Fly : A Keystone Species for the Future of Sustainable Waste Management and Nutritional Resource Development : A Review. Insects, 16(750), 1–41. https://doi.org/https://doi.org/10.3390/insects16080750
Tellinghuisen, J., Holford, P., & Milham, P. J. (2025). Analysis of Phosphorus Soil Sorption Data : Improved Results from Global Least-Squares Fitting. Soil Systems, 9(22), 1–14. https://doi.org/https://doi.org/10.3390/soilsystems9010022
Vašková, J., Stupák, M., Vidová Ugurbaş, M., Žatko, D., & Vaško, L. (2023). Therapeutic Efficiency of Humic Acids in Intoxications. Life, 13(4), 1–23. https://doi.org/10.3390/life13040971
Wang, C., Xu, C., Ma, R., Li, Q., Hu, F., Zhao, S., & Bol, R. (2025). Comparison for colloidal stability and aggregation behavior of fulvic and humic acids : effects of cations and pH. Frontiers in Soil Science, 5(1452870), 1–14. https://doi.org/10.3389/fsoil.2025.1452870
Xiong, A., Ruan, L., Ye, K., Huang, Z., & Yu, C. (2023). Extraction of Chitin from Black Soldier Fly ( Hermetia illucens ) and Its Puparium by Using Biological Treatment. Life, 13(1424), 1–12. https://doi.org/https://doi.org/10.3390/life13071424
Xu, J., Mohamed, E., Li, Q., Lu, T., Yu, H., & Jiang, W. (2021). Effect of Humic Acid Addition on Buffering Capacity and Nutrient Storage Capacity of Soilless Substrates. Frontoers in Plant Science, 12(644229), 1–12. https://doi.org/10.3389/fpls.2021.644229
Xue, S., Hu, Y., Wan, K., & Miao, Z. (2024). Exploring Humic Acid as an Efficient and Selective Adsorbent for Lead Removal in Multi-Metal Coexistence Systems : A Review. Separations, 11(80), 1–21. https://doi.org/https://doi.org/10.3390/separations11030080
Yang, M., Zhou, D., Hang, H., Chen, S., Liu, H., Su, J., Lv, H., Jia, H., & Zhao, G. (2024). Effects of Balancing Exchangeable Cations Ca, Mg, and K on the Growth of Tomato Seedlings (Solanum lycopersicum L.) Based on Increased Soil Cation Exchange Capacity. Agronomy, 14(3), 13. https://doi.org/10.3390/agronomy14030629
Zhao, L., Hao, Y., Antonietti, M., Zhao, Y., Yang, F., & Liu, Z. (2025). Impact of Artificial Humic Acid on the Migration and Transformation of Soil Phosphorus. Agronomy, 15(2482), 1–13. https://doi.org/https://doi.org/10.3390/agronomy15112482





